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I. INTRODUCTION

This report presents some calculated results of the effects that

pure water ice has on the backscatte_: pattern of a perfectly conducting

ground plane. Pure water ice has ve_:y small losses and therefore a

uniform ice layer has little effect on the backscatter of the ground

plane. This would not be the case for other geometries since a curved

ice surface would introduce a lens m_chanism. On the other hand, a

rough ice layer, where the thickness of the ice varies as a function of

a spatial coordinate, can significantly alter the manner in which the

ground plane reflects electromagnetic energy. This report investigates

the changes in the backscatter pattern which are due to one type of ice

roughness.

The analysis of the backscattel from a ground plane covered with

an ice layer of non-uniform thickness is similar to the analysis of

dielectric multilayers with layer t_ickness distortions [1]. This

analysis is based on a Physical Optics approximation to the reflected

field. Briefly, this approximation treats each point on the rough ice

surface as if the point were on an :,nflnite tangent plane to that

point. This allows the rough surface to be treated as a uniform ice

layer, at that point, and the refle,:ted field can be found for that

point. An aperture is set up around the ice covered ground plane, and

the reflected fields from each point: are taken as aperture fields. The

reflected field from the entire str_cture is then produced from an

aperture integration using a free sl_ace Green's function. Note that

this study does not include the influence of surface waves. This



analysis technique is described in mathematlcal detail in Section II

along with a discussion of the net result.

Examples of the results generated by the technique are given in

Section Ill. The ice surface roughness is represented by a Oaussian

function and the results for various amplitudes of the Gausslan

function are given. Section IV summarizes the technique and the

llmitations which should be considered when using it.

II. DERIVATION OF TI_ BACKSCA_ FIELD

A. Introduction

This section is concerned with presenting the mathematical

derivation of the backscattered field from a layer of ice of non-

uniform thickness on a ground plane. The ice may be considered to be

the first layer of a two layer dielectric multilayer structure that is

backed by a conducting plane. This model of the ice covered ground

plane is depicted in Figure 2.1. In the figure, Layer 1 is a uniform

ice layer, having constitutive parameters ¢1,_1. Layer 1 is bounded on

one side by the ground plane and on the other side by Layer 2. Layer 2

is simply a free space layer which is included in order that the z=O

plane can be used as the aperture plane. The ice covered ground plane

has a rectangular area, LxLy, and the ground plane is centered with

respect to the x and y axes.

A rough ice layer on a ground plane may be modeled as a two-layer

dielectric multilayer structure vlth a thickness distortion of the

layers. An example of this idea is shown in Figure 2.2. As before,

Layer 1 is the ice layer and Layer 2 is simply free space. The

2
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Figure 2.1. Geometry of a ground pilane with a uniform layer of Ice.
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Figure 2.2. Ground plane covered with a non-uniform thickness of ice,
modeled as a two-layer multllayer wlth layer thickness
distortions.

presence of Layer 2 allows the aperture plane to remain as the z-O

plane, even with the rough ice present. The goal of this study is to

determine the effect that the roughness of the ice has on the

backscatter of the ground plane.

Although not necessary, this report will investigate the

backscattered field in the _-_(_,90 °) plane, where it is a maximum.

This is done mainly to simplify the discussion of the results. It also

prohibits the presentation of the examples from getting excessive. The

extension to other _-planes is straightforward and can be done if

necessary.

During the mathematical development of the backscattered field,

the ice covered ground plane will be treated as a two layer dielectric

4



multllayer backed by a ground plane. I/hen the ice has a uniform

thickness, this multilayer is a planar multilayer since the boundaries

between the layers form planes. A rough ice surface viii be treated as

a thickness distortion in the layers of the multilayer. A plane wave

is assumed to be incident on the twc layer multllayer from the

direction indicated by (e) in Figure 2.2, and the backscattered field

is to be determined. The polarization of the incident wave separates

the analysis into two cases. ATE wave or perpendicularly polarized

wave (to the incidence plane) will be treated first, after which will

follow the case of TM or parallel p,,larlzed incidence.

B. TE Case

For the TE case, the incident _lectric field can be written as,

Ei = E eJkysinee jkzc°se (2.1)9

x O

2R
where k=_ is the free space wave namber. Under the Physical Optics

approximation described in the introduction, a point (x,y) on a

distorted multilayer will cause a reflected plane wave,

Ex = R(x,y,O) E ejkysine e-jk2c°se
r o

(2.2)

where R(x,y,e) is the reflection coefficient of a planar multilayer

having the same geometry of the distorted multilayer, at the point

(x,y), for an angle of incidence, _e). This expression for the

reflected field should be a reasonable approximation for the true field

5



provided that the radius of curvature of the distortion at the point

(x,y) is sufficiently large.

As mentioned earlier, the z=O plane is chosen to be the aperture

plane. The reflected field given by Equation (2.2) can he used to form

the equivalent magnetic current, M, in the aperture. The magnetic

current is found from,

. 2 [ x e (2.3)
a

where E is the aperture field. Combining Equations (2.2) and (2.3),
a

and noting that _&_ for large radii of curvature,

m

-2 EoR(X,y, e)e jkyslne

0

L L

L L
X

Ixl > y-, lyl >

(2.4)

vhich shovs the assumption of zero aperture field outside of the

multilayer. The equivalent magnetic current can be integrated vith the

free space Green's function, to produce the electric vector potential

[2]

, . krH= 4nr _(r') ds' (2.5)

vhere _'is the radial unit vector,

r' is the source location,



r is the distance to a far fle[Ld point,

and the integration is over the enti_:e aperture.

Using Equation (2.4) in EquatloJl (2.5) produces

-Jkr
_ -e E

2nr o Ix/2 _y/2 R(x,y,8) ej2kysin8 dxdy

Lx/2 J-Ly/2

which is the result from considering the _b=90° plane and for

considering backscatter. Since

(2.6)

= fsin0sin# + OsinOsin@ + +co_@

in the _t-90° plane,

= fsine+ ecosO

Finally, from [2],

(2.7)

E O = -jkF@

E@ = jkF e

which, from using Equations (2.6) ard (2.7), results in the

backscattered field,



and

= -e -jkr _Lx/2 rY/2E_ _ Jk_oCOSO R(x,y,e)e j2kystne dxdy

J-Lx/2 J-L /2Y

(2.8)

Ee = 0 . (2.9)

Obvlously, to flnd the backscattered field, the integral,

_x12 _y12Q(O) = R(x,y,O)e j2kyslnO dxdy (2.10)

J-Lx/2 J-L /2Y

must be solved. This can be done numerlcally provided that the planar

multllayer reflectlon coefficients, R(x,y,e), can be found. To find

these, use has been made of the recurslve technique of Richmond [3].

With this technique, the Physical Optics approximation and Equation

(2.8), the backscattered field of many types of Ice layer distortions

can be found.

It is possible to further investigate the effects of ice layer

distortions by choosing to study a particular type of distortion. For

this report, it is of interest to examine the effects of a distortion

that is periodic in space. To further simplify thls analysis,

distortions which are a function of a slngle coordinate only v111 be

considered. Hence, the reflection coefficient can be written as,

R(x,y,O) = R(y,e) = R(y+nA, O) (2.11)



where n is an integer and A is the soatial period of the distortion.

Further, let the length of the ground plane, in the y direction,

be an integral number of spatial vavelengths,

L = HA
Y

(2.12)

Using Equation (2.11) in Equation (£.I0), It can be seen that the

Integral takes the form

/2Q(O) = Lx R(y,O) ej2kys:InO

J-L /2
Y

dy (2.13)

Thls Integral can be vrltten as a smmation over each period,

A+A/2Q(O) = Lx _ R(y,e) •j2kysine dy

n JnA-A/2

(2.14)

and the summation is carried over 811 of the periods.

Haklng the variable trCnsformstion,

_+nA-y
(2.15)

and recalling Equation (2.11), Equ_tlon (2.14) becomes,



/2
o(e) = Lx _. R(_,e) ej2kslne(_+nA) d_ . (2.16)

n A/2

Separating the exponentlal terms leaves the integral independent of the

summatlon_

Izo(e) = Lx R(_,e)e j2k_sine d_ ej2knAslne . (2.17)

M2 n

Using Equation (2.17), the backscattered field for a distortion that is

periodic in y can be written as,

kr Iz2nr JkEoCOSO Lx R(y,O)e j2kysine dy •j2knAsinO

A/2 n

(2.18)

Note that written in this form_ it is evident that the periodically

distorted ice layer may be interpreted as an array. The elements of

the array are the individual periods of the distorted ice layer. The

response of a single period_ or element in the array_ is represented by

the integral in Equation (2.18). The summation in that equation

accounts for the phasing differences between the periods or elements in

the array. In antenna theoryt this term is called the array factor.

The array factor is a geometric series and it can be shown to sum to

[4]

10



A.. .j2kn ioo..io sio )
n

(2.19)

where uf2kAsin8, and again, M is the total number of periods. This

array factor has a maximum value of _ and can thus be normalized by

writing

AF=M
(2.20)

where the term in the brackets is c_,lled the normalized array factor.

Using Equation (2.20) in Equation (2.18), the backscattered field

can be written as,

_e-Jk r

E@ = 2Rr JkEo
- --:- R(y,O) eJ2kysinOdy •

cosO LxMLH si_ J-A/2

(2.21)

The echo area or radar cross sectlo_ of the ice covered ground plane,

given by,

o'= 4Rr 2

would be

(2.22)

11



12-- R(y,0) eJ2kysinedy • (2.23)

This result can be checked by considering the case of a perfect

conductor only, R(y)=-l, of length Ly=HA. Using the substitution,

At=y, Equation (2.23) can be written as,

n ' eJUtdt
k'cos e(LxMA),L Ini_ . 1/2

2

(2.24)

The Integral produces the well known function,

eJUtdt .

and thus Equation (2.24) becomes

or

me

w

k2cos'e
[sln(kL slne)1'

(LxLy)'[(kLy syinO) J (2.25)

which is the Physical Optics backscatter in the 4_90° plane of a

perfectly conducting plate.

12



In order to gain some information about the effect of the

roughness of the ice alone, it is possible to subtract the

backscattered fleld of the ground p]ane with a uniform thickness of

ice, from the backscattered fleld oi! the ground plane wlth the rough

ice layer. Returning to Equation (:_.21), this action produces the

equation,

(2.26)

where Ro(8) is the reflection coeffLcient of the ground plane with the

uniform thickness of ice. The thickness of the uniform layer is chosen

to be equal to the thickness of the rough layer at the ends of the

period (yf±A/2). The radar cross section, due to the ice layer

distortions alone is then,

Aa(e) . I] I'k [sin (_ M)]' [R(y, O)_Ro (O) ] ej 2kysinOdy .

L _,,,2
(2.27)

In order to consider the effect of a single period alone, assume the

multilayer is of unit length in the x direction. Then

(2.28)

13



To eliminate the effect of all the periods, divide each side by the

array factor,

.p(O)-  a(e) (Y, e)-Ro(e) eJ2kysinedy

, /,/2

(2.29)

This equation represents the radar cross section which is due to a

single period of the ice roughness. This form is the most useful for

this type of study, for it allows Just the roughness itself to be

studied. Note that the action of isolating a single period of an array

of scatterers has introduced artificial edges on the individual

scatterer (the ends of the period), that do not appear in the total

scatterer. The subtraction aids in an attempt to remove the effects of

the edge, by eliminating the first order diffraction of the edges.

However, because of the nature of R(y,8), there will be higher order

diffraction, such as slope diffraction, that is not removed by the

subtraction. So although this technique can provide useful

information, the limitations stated here must be considered when

interpreting the results.

Equation (2.29) also eliminates the need to specify the size of

the ground plane. All that is required is the length of the period, A,

the constitutive parameters of the ice, and a function representing the

distortion. Once the radar cross section of a single period is known,

14



the result can be simply extended to a ground plane of any size. Nith

known, and knowing that there are H periods of distortion in y,
P

(2.30)

where the last term scales the result to any length in the x direction.

Equation (2.29) is the result that has been sought by this study.

Examples using this equation will be, given in Section III; however,

first it will be shown that a slmil_,r result may be obtained for TM

wave incidence.

C. TM Case

The derivation for TH wave incSdence is similar to that followed

in the previous section. Here, the incident magnetic field is assumed

to be

Hi Eo eJkysln8 eJkZcos8 (2.31)
x " _"

where _ is the impedance of free splice.

causes the reflected field,

The ground plane and ice layer

E

Hr = R(x,y,O) _ •jkysinO e-Jkzc°sO (2.32)
X

15



where R(x,y,e) is the reflection coefficient, using the Physical Optics

approximation, for TM wave incidence. For this case, the equivalent

electric currents

= 2fi x H (2.33)
a

are found in the aperture,

m

' E e)eJkysln%
2 _ R(x,y, 9

0

L L

Ixl _<_ lyl _

L L

Ixl>T _ lyl>_

(2.34)

Knowing the equivalent currents, the magnetic vector potential, A [2],

can be found,

 krll" 4.--'-'-__(r')e jkf'r'ds' 9 , (2.35)

from which the backscattered field is obtained by using [2],

Ee - -J_ Ae

E_ = -j_ A_ .
(2.36)

16



Substituting the currents into Equation (2.35), and using Equation

(2.36), the backscattered field in the _-90 ° plane, for TM wave

incidence is,

-Jkr Ix/2Ee = -e2nr JkEocose I R(x,y,e) eJ2kysinedxdy
(2.38)

J-Lx/2 J-Iy/2

and

E@= 0
(2.39)

Note that E0 for TM incidence has tle identlcal form that E@ had for TE

incidence. The only difference is :_n the calculated value of the

reflection coefficient, since it wi_il be different for the two

polarizations.

Because of the slmilarity of the two expressions, the results of

the previous section can be applied here. Assuming periodic

distortions in y and no distortions in x as before, the radar cross

section of the ice covered ground ptane will be

k2cos2e
a(e) = . IA/2 [2

R(y, e)ej2kysinedy

-A/2

(2.40)

where u=2kAsine as before.

17



is

Similarly, the radar cross section, due to the distortions alone,

Aa(e) = II [R(Y' O)-Ro(O) ]eJ2kysinedy '

, A/2

(2.41)

and the radar cross section, due to a single period is

k2c°s20 [R(y, e)_Ro(O) ]eJ2kysinedy . (2.42)_p(e) =
A/2

The examples to be presented in Section III will show the results

of ice covered ground planes for both TE and TM wave incidence.

D. Summary

In this section, the backscattered field of a ground plane covered

by an ice layer with non-unlform thickness was considered. The problem

was approached by treating the structure as a two layer dielectric

multilayer with layer thickness distortions and making s Physical

Optics approximation to the'distorted layers. In effect, this

approximation allowed the reflection coefficients of an infinite planar

multllayer to be used. The reflection coefficients were used to find

the reflected field of the structure, which in turn were used to find

equivalent currents in an aperture plane. The equivalent currents were

then integrated to find the backscattered field.

18



The special case of ice layer tl_Ickness that is a periodic

function of a single coordinate, was considered in detail. It was

found that, for this case, a normali::ed radar cross section could be

found for a single period. The compl.ete radar cross section could be

found by multiplying by the number o!! periods, the normalized array

factor, and the length in the other :oordinate. Studying the radar

cross section in this form allows th_ effect of the roughness alone to

be examined, without having to speciEy the size of the multilayer.

Only ice distortions of the typ,_ mentioned were examined in

detail. However, note that any distortion function, in an ice layer of

finite size, will at least have a period of unity. Thus, this analysis

should have sufficient generality to treat any distortion of ice layer

thicknesses, provided fi-_at the surface. Also since distortions were

taken to be a function of y only, the backscattered field was only

derived for the 9-I (_t_90°) plane. Although the equations could have

been written more generally, this plane will contain the maximum effect

for the type of distortions considezed.

The backscattered field was dexived for both TE and TM wave

incidence. The field for both polaxizations was found to have the same

form and thus the interpretation is the same. Backscatter from

arbitrary polarization of the incident wave can be constructed from

these two results.

ii9



III. EXAMPLES

A. Introduction

In this chapter, the analysis of the previous section will be

applied to several examples of ground planes covered by ice. A

Gaussian function will be used to describe the roughness of the ice

layer. The examples viii demonstrate the effect of the ice roughness

as the amplitude and shape of the Gaussian function is varied. Note

that physically this represents the thickness variation of the ice

layer. The examples will provide plots of the normalized radar cross

section of a single period of the distortion function given by Equation

(2.29) or Equation (2.42). To extend the results to an actual ice

covered ground plane, the terms shown in Equation (2.30) must be

included.

One of these terms, the normalized array factor, modifies the

angular dependence of the backscatter. For this reason, the section

will begin with a review of the array factor and examine what it

implies to the backscatter pattern. The examples will be presented

after that review.

B. The Array Factor

A discussion of array factors is included in most antenna texts.

The array factor, which appears in the backscattered field expression,

is a result of the assumption that the distortions in the layer

thickness of the multilayer are periodic. The fact that it does appear

allows the backscattered field to be interpreted as coming from an

array of scatterers. These scatterers, when viewed from the

2O



backscatter direction, appear to be uniformly illuminated, and thus,

the normalized array factor,

AF =.

M sln_)

(3.1)

is of the same form as the array factor for an M element, uniformly

excited, equally spaced array anten,,a. The difference between the

scattering and the antenna is in th- interpretation of u. For the

antenna, u would be given by,

u = kdsine

where d is the element spacing.

u = 2kAsin8

In the backscattering problem,

(3.2)

(3.3)

where A is the size of the spatial period of the distortion. An extra

factor of two appears in Equation (3.3) because for backscatter, the

array factor must take into'account the relative phase difference

between scatterers in the incident field in addition to the relative

phase difference between the fields_ reflected by the scatterers. In an

array antenna, there is only the phase difference between the fields

radiated by the elements. The net result of this factor of two is that

in the scattering problem, the vis:ble region of the array factor is

21



twice as large as that of an array antenna. This viii be further

demonstrated shortly.

The array factor shown in Equation (3.1) is periodic, as a

function of u, with a period of 2n. It attains a maximum value at

u=2n, where n is an integer. An example of the array factor, for M=3,

is shown in Figure 3.1. Other properties of this array factor, as

listed in [4] are as follows:

.

2.

e

.

As M increases, the width of the main lobe narrows.

As M increases, there are more minor lobes in one period of

the array factor. The total number of lobes in one period is
M-l, with one main lobe and M-2 minor lobes.

The width of the main lobe, in u-space, is 4n/M and the width
of the minor lobes are 2hiM.

The minor lobe levels decrease with increasing H. As M gets

large, the peak minor lobe level approaches the peak minor
lobe level of the sin(u)/u function, -13.3 dB.

5. The magnitude of the array factor is symmetric about u=n.

These properties may be observed by examining graphs of the array

factor for different values of M. Figure 3.2 shows the array factor

for M=5, Figure 3.3 is M=lO, and Figure 3.4 is M=lO0. Kraus [5]

provides a more extensive set of array factor plots.

The array factor is transformed to real space by Equation (3.3).

How much of the array factor pattern, or how many periods of it appear

in real space, depends on the value of A. Note that since the maximum

value of sin8 is unity, the boundary of real space is given by,

A
um = 2kA = 4n X , (3.4)
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which when compared to the boundary for an array antenna, Um=2X a/2,

shows that the visible region is twice as large for the array of

scatterers. From this equation, am! knowing that the array factor has a

period of 2R, it can be seen that m_,re than one period will occur if

^ 1 (3.5)
_ _ •

The important consequence of this i:!;that under this condition, the main

lobe is repeated, which creates a g_ating lobe in the backscatter

pattern. Recall that in an antenna array, a grating lobe is ensured

when the element spacing is one wavelength. The fact that periods of

one half wavelength cause grating lobes in a backscatter pattern is

again due to the factor of two in Equation (3.3). For spatial periods

that are less than a half wavelength, there is only one main lobe and

only a portion of one full period of the array factor appears in real

space.

The periodicity of the array factor allows the grating lobe

positions to be predicted by,

n (3.6)
sine = 2"(A/),)

where n is an integer, up to and ir_cluding the largest integer that

satisfies

n __ 2(A/k) •
(3.7)
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These equations are true, independent of the number of periods of M,

since M only affects the vidth of the main lobe, and not the position.

The array factor is an important consideration, vhen determining

the effects of distortions on the multilayer, because of the grating

lobes. Even though far out grating lobes are reduced by the cos(6)

factor in the final pattern, this factor is only -3 dB at 45 °. Thus,

many grating lobes could give returns on the same order of magnitude as

the broadside backscatter. Further, it must be remembered that the

return of a single period of distortion will have the envelope of the

array factor impressed on it, in the final backscattered field.

Examples of these single period returns, are given in the following

sections.

C. Radar Cross Section due to Gauasian Ice Layers

In earlier work on the backscatter from layer distortions in

dielectric multilayers [6], it was found that a convenient distortion

function to use vas the Gaussian function. The study compared results

produced by the Physical Optics technique vith results generated by a

Moment Method technique. The results compared favorably out to about

15 ° away from grazing incidence. Therefore, this study rill present

Physical Optics results for the range of angles

Note that the backscatter pattern is symmetric about 0=0 ° for the

geometries to be considered.
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The frequency used in the examples is I0 GHz. For convenience, the

period of the ice distortion function is chosen to be one wavelength at

this frequency. Thus, the width of the section of the ground plane,

which is beneath this ice, is 1.180_". For reference, it is instructive

to examine the backscatter pattern c,f this section of the ground plane

alone. This pattern is presented it,Figure 3.5 and it applies to both

TE and TM polarizations. The analysis presented in Section II seeks to

determine how the ice layer changes this pattern.

The section of the ground plane is covered by a Gaussian ice layer

as shown in Figure 3.6. The thickmss of the ice layer is given by,

1 2

D(y) = Iie

inch y ;l 21

y>l 21

(3.8)

where A is the amplitude of the Gau_slan function and a is a parameter

which controls the shape of the ice layer and is not the radar cross

section. In the figure, B is the thickness of the ice layer at the end

of the period. This thickness of i:e, covering the entire section of

ground plane, will be referred to a_ the base layer of ice. The base

layer of ice, over the ground plane, is used to calculate Ro(8) in

Equations (2.29) and (2.42). This reflection coefficient is then

subtracted from the reflection coefficient of the Gaussian ice layer

over the ground plane to produce the subtracted backscatter pattern

represented by Equations (2.29) and (2.42). Hence, the subtracted

backscatter pattern represents the effect of the Gaussian ice bump on
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Figure 3.6. One period of a Gaussi_m ice layer covering a ground plane.

the backscatter pattern of the ground plane and base layer of ice.

However, it will soon be shown that the base layer of ice has very

little effect on the backscatter of the ground plane.

The independent parameters which are used in the examples are the

amplitude of Gaussian function A, and the thickness of base layer B.

The choice of these two parameters determines the value of a which is

found from,

A (3.9)
am

242 In(A/B) '

This equation is derived from Equation (3.8) by using
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D(A/2) - B (3.10)

and solving for a.

Before the subtracted backscatter patterns can be calculated, the

constitutive parameters of ice must be determined. Pure water ice Is

non-magnetic and therefore the relative permeability is unity. The

complex relative permittivity is given by [7],

tr " Cr' - jCr'' (3.11)

where

¢1 + ¢2 a2f'
t m

Cr 1 + =:f2 (3.12)

¢1-¢21=f

Cr 1 + czmf2 (3.13)

and f is the frequency In Hz. For pure water ice,

¢1 = 75

a = 1.2 x 10-4 e-O'IT (s)

where T is the temperature in degrees C. These relations are good from

D.C. to 10 GHz and from O°C to -70°C. For 10 GHz and O°C,
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and

¢ ' - 3.00
r

'' - 6.00 x 10-5 (3.14)
r

At I0 GBz and -70"C,

and

_:, - 3.00
r

¢ ,, = 5.47 x 10-B (3.15)
r

Thus at I0 GHz and any applicable tenperature, pure water ice is nearly

lossless. Therefore, the examples will use the relative permittivity
B

represented by Equation (3.14).

The geometry of the ice layers in the first example is represented

in Figure 3.7. This example considers a base layer of 0.025 inch and

four Gaussian function amplitudes with A=O.05, 0.1, 0.15 and 0.2 inch.

First, consider the backscatter of the base layer over the section of

the ground plane. This is shown in Figure 3.8 which is applicable to

both TE and TM polarizations. Comps,ring this figure with the pattern in

Figure 3.5 shows the negligible eff(_ct that the base layer has on the

backscatter of the conducting plate

The effect of the Gaussian buml,s for TE wave incidence can be seen

in Figure 3.9(a). This figure show:_ the subtracted backscatter

represented by Equation (2.29). Re:all that this figure represents the

changes in the backscatter pattern _iue to the introduction of the

Gaussian ice bump on the uniform ba:_e layer. This figure indicates that
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(a) TE wave incidence

Subtracted backscatter for Example 1, B=0.025 inch, A=O.05,

0.1, 0.15, 0.2 inch, Lx=l meter, Ly=1.1803 inches and f=lO
GHz.
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(b) TM wav,_ incidence
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the effect is greater for thicker ice layers, at all angles. The

subtracted backscatter for this example, with TM wave incidence, is shown

in Figure 3.9(b). Again, the effect is greater for the thicker layers.

The limitations of the model must be kept in mind while examining

the calculated results. Since the model is based on a Physical Optics

approximation, the condition

fi'-t

where fi is the normal to the surface, must hold. This approximation

becomes worse as the amplitude of the distortion is increased.

Additionally, the shadowing which occurs as the incidence angle

approaches grazing is not included in the analysis.

The geometry of the ice layers considered in the second example is

shown in Figure 3.10. Sere a base layer of 0.05 inch thickness is used

along with Gaussian function amplitudes of A=0.1, 0.15 and 0.2 inch. The

backscatter of the base layer, backed by the conducting plate is shown in

Figure 3.11. Again the nearly lossless ice has negligible effect on the

backscatter of the plate. The subtracted backscatter for this example is

shown in Figure 3.12. The trend of an increased backscatter level, for

thicker ice layers, is exhibited in these calculations also.

The geometry of the ice layers considered in the third example is

shown in Figure 3.13. Here a base layer of 0.10 inch is used along with

Gaussian function amplitudes of A=0.15 and 0.2 inch.
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(a) TE va_e incidence

Figure 3.12. Subtracted backscattel for Example 2, B=O.05 inch, A-0.1,
= 1 meter, L =1.1803 inches and f=lO GXz.

0.15, 0.2 inch, Lx y
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(b) TM wave incidence
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Figure 3.14. Backscatter of 0.I0" base layer over a plate, Lx-i meter,
L -I.1803 inches and f-lO GHz.
Y
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Figure 3.15. Subtracted backscattez for Example 3, B=0.10 inch, A=0.15,

0.2 inch, Lx=l meter, Ly=1.1803 inches and f=lO GHz.

45



oT
w

I

.................... J ..................... _ .................... J ...........................................

°

|0.
I

15. 30. 45. 60.

THETA (DEGREES)

75.

Figure 3.15. Continued.
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The backscatter of the base layer, lacked by the conducting plate, is

shown in Figure 3.14. Comparison oJ Figure 3.14 with Figure 3.5 shows

that the base layer has negligible _ffect on the backscatter of the

plate. The subtracted backscatter _or this example is shown in Figure

3.15. Again, a greater thickness o:!!ice causes a greater effect on the

backscatter of the plate.

The reason that the subtracted backscatter levels increase with an

increase in the thickness of the ic,_layer is related to the fact that

the ice is nearly lossless. Becaus_ the ice is nearly lossless, the

thickness of the layer only modifle_ the phase of the reflection

coefficient. The modification to tl_emagnitude of the reflection

coefficient is negligible. This wa_ demonstrated in Figures 3.8, 3.11

and 3.14, which showed that a base Layer of ice does not significantly

effect the backscatter pattern of the plate. Again we observe that this

is dependent on satisfying the approximation that fi_i since the

reflection (transmission) coefficient at the first interface becomes

dependent on the incidence angle.

D. Summary

In this chapter, the practlca] implicatlons of the results derived

in Section II were considered. These derivations show that a periodic

ice cover over a ground plane may t:e treated as an array of individual

scatterers. Each element in this _rray is a section of the ground

plane, covered by one period of the ice layer. The backscattered field

of the array is the product of the individual response of a single
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element and an array factor which takes into account the phase

differences between the elements of the array.

The first part of this section examined the array factor. The

properties of the array factor were listed and the differences between

an array antenna and an array of scatterers were pointed out. It was

also shown that distortion periods greater than k/2 will produce grating

lobes in the backscatter pattern. Several examples of the array factor,

for different numbers of elements_ were given.

The response of a single period of a Gaussian ice layer over the

ground plane was also examined in this section. To do this, three base

layers, each with five separate thickness Gaussian functions, were

considered. The results presented showed the response as a function of the

amplitude of the Gaussian function and the thickness of the base layer.

IV. SUMMARY AND CONCLUSIONS

The analysis used in this report is based on an approximation so that

all internal reflections can be incorporated readily into the solution.

This seriously restricts the height of the ice discontinuity. To extend

this analysis, it would be necessary to incorporate a ray tracing

procedure to find the total'reflected fields in aperture plane and proceed

as before. An alternate solution would consist of using the more time

consuming integral equation solution. However, it is clear for even these

small height irregularities that this surface roughness is a significant

contributor to the RCS. It will only increase as the height is increased.

This report has investigated the effect of variations in the

thickness of an ice layer on the backscattered field of a ground plane.
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When the variation is periodic, it has been found that the structure may

be treated as an array of scatterers, with the elements of the array being

a section of the ice covered ground plane, containing a period of the

variation. The results of an individual scatterer are easily extended to

a structure containing many such scatterers. Several examples were given

to show the response from ice layer_ having a Gaussian shape.

The scattering analysis presented in this report is based on a

Physical Optics approximation. Therefore, it is anticipated that the

analysis is the most accurate for al,gles of incidence near broadside. As

the angle of incidence approaches g_azing, the Physical Optics

approximation is not an adequate re_resentation of the true scattering

mechanisms. Additionally, the accu_acy of the Physical Optics

approximation depends on the type o_ distortion function being considered.

The amplitude and period of the distortion function must be such that the

radius of curvature is sufficiently large to allow this to be a reasonable

approximation. Earlier comparisons of the results of the Physical Optics

technique with Moment Method calculations indicate that the Physical

Optics technique should give reasonable results to within 15" of grazing

incidence [6].

Finally, it should be noted that the amplitudes of the distortion

function chosen for use in the exazples, were an arbitrary choice. It is

possible that the value chosen may not be typical of what occurs in

practice. Therefore it is likely that the examples with the largest

amplitudes should be treated as wo, st cases.
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